Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. oral res. (Online) ; 33: e097, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039297

ABSTRACT

Abstract To evaluate the torsional properties of engine-driven pathfinding instruments manufactured from different NiTi alloys - R-Pilot (tip size 12.5;.04 taper; M-Wire) and One G (tip size 14;.03 taper; Conventional NiTi). A total of 40 NiTi instruments from engine-driven pathfinding instruments (n = 20) were used. The torsion tests followed ISO 3630-1 (1992). Three millimeters of each instrument tip was fastened to a small load cell by a lever arm linked to the axis of torsion. During the test, the torsion testing machine software measured the maximum torsional strength and angle of rotation (0) before instrument failure. The fractured surface of each instrument was assessed by scanning electron microscopy (SEM). In addition, a supplementary examination was performed to measure the cross-sectional area and the metal mass volume of each instrument 3 mm from the tip. Data were analyzed using a t-test, with significance level set at 5%. R-pilot had significantly higher torsional strength than did One G (p < 0.05). Regarding the angle of rotation to fracture, One G had higher angles than did R-Pilot (p < 0.05). The supplementary examination showed that R-Pilot had the highest cross-sectional area and volume of metal mass at 3 mm from the tip (p < 0.05). R-pilot (M-Wire NiTi alloy) had a significantly higher torsional strength and One-G (superelastic NiTi alloy) had the highest angle of rotation to fracture.


Subject(s)
Root Canal Preparation/instrumentation , Dental Alloys/chemistry , Dental Instruments , Alloys/chemistry , Reference Values , Stress, Mechanical , Surface Properties , Materials Testing , Microscopy, Electron, Scanning , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Equipment Failure Analysis , Torque , Equipment Design
2.
RSBO (Impr.) ; 10(1): 20-23, Jan.-Mar. 2013. tab
Article in English | LILACS | ID: lil-695907

ABSTRACT

Introduction: Laser technology is gaining increasing importance in dental practice and also in the field of Endodontics with its ability to promote disinfection and experimentally in the preparation of root canal. The action of different types of lasers results in changes representing the increase in permeability of dentinal tissue (Er: YAG) or sometimes by a decrease in melting and recrystallization of dentin (Nd: YAG). Objective: this study assessed through apical dye leakage, the influence of irradiation with two types of laser, regarding to the quality of apical sealing of endodontic fillings. Material and methods: Thirty-six single-rooted teeth were used after being prepared with the ProFile system up to size #40 instrument and then divided into four experimental and two control groups. The technique used previously to the filling was as follows: G1 - not irradiated; G2 - irradiated with Er: YAG; G3 - irradiated with Nd: YAG and G4 - irradiated with Er: YAG followed by Nd: YAG. After external waterproofing and dry, the specimens were filled with a cold vertical condensation technique, using AH Plus sealer, and immediately immersed into 0.5% methylene blue solution for subsequent cleavage. The linear values of apical marginal leakage were obtained with the aid of an optical microscope connected to a computer using the Image Lab® software. Results: Data analysis showed the non-existence of statistically significant (p = 0.05) differences between different groups. Conclusion: It was concluded that the laser does not have influence on the apical sealing.

SELECTION OF CITATIONS
SEARCH DETAIL